A geometrically nonlinear finite-element model of the cat eardrum.
نویسندگان
چکیده
Current finite-element (FE) models of the eardrum are limited to low pressures because of the assumption of linearity. Our objective is to investigate the effects of geometric nonlinearity in FE models of the cat eardrum with an approximately immobile malleus for pressures up to +/-2.2 kPa, which are within the range of pressures used in clinical tympanometry. Displacements computed with nonlinear models increased less than in proportion to applied pressure, similar to what is seen in measured data. In both simulations and experiments, there is a shift inferiorly in the location of maximum displacement in response to increasingly negative middle-ear pressures. Displacement patterns computed for small pressures and for large positive pressures differed from measured patterns in the position of the maximum pars-tensa displacement. Increasing the thickness of the postero-superior pars tensa in the models shifted the location of the computed maximum toward the measured location. The largest computed pars-tensa strains were mostly less than 2%, implying that a linearized material model is a reasonable approximation. Geometric nonlinearity must be considered when simulating eardrum response to high pressures because purely linear models cannot take into account the effects of changing geometry. At higher pressures, material nonlinearity may become more important.
منابع مشابه
Geometrically nonlinear analysis of axially functionally graded beams by using finite element method
The aim of this paper is to investigate geometrically nonlinear static analysis of axially functionally graded cantilever beam subjected to transversal non follower load. The considered problem is solved by finite element method with total Lagrangian kinematic approach. The material properties of the beam vary along the longitudinal direction according to the power law function. The finite elem...
متن کاملLow-frequency coupling between eardrum and manubrium in a finite-element model.
The mechanical coupling between the eardrum and the manubrium was studied by means of a finite-element model of the cat eardrum. Previous calculations of the effect of varying the eardrum curvature were extended, demonstrating the critical role of curvature in the behavior of the eardrum. A new procedure was developed for directly studying the coupling of forces from different points on the ear...
متن کاملStress Analysis of the Human Ligamentous Lumber Spine-From Computer-Assisted Tomography to Finite Element Analysis
Detailed investigation on biomechanics of a complex structure such as the human lumbar spine requires the use of advanced computer-based technique for both the geometrical reconstruction and the stress analysis. In the present study, the computer-assisted tomography (CAT) and finite element method (FEM) are merged to perform detailed three dimensional nonlinear analysis of the human ligamentous...
متن کاملOn the damped frequency response of a finite-element model of the cat eardrum.
This article presents frequency responses calculated using a three-dimensional finite-element model of the cat eardrum that includes damping. The damping is represented by both mass-proportional and stiffness-proportional terms. With light damping, the frequency responses of points on the eardrum away from the manubrium display numerous narrow minima and maxima, the frequencies and amplitudes o...
متن کاملModeling of the cat eardrum as a thin shell using the finite-element method.
A finite-element model of the cat eardrum is presented which includes the effects of the three-dimensional curved conical shape of the drum. The model is valid at low frequencies (below 1-2 kHz) and within the range of linear vibration amplitudes. The material properties used are based on a review of the literature. The critical material parameters are the stiffness (2 times 10(8) dyn cm(-2)) a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 119 5 Pt 1 شماره
صفحات -
تاریخ انتشار 2006